

Funded by the European Union

Grant no. 101119058

ERC Synergy grants: my experience

Professor James Dawson

Department of Energy and Process Engineering, NTNU

james.dawson@ntnu.no

ERC Synergy grant Webinar, Research Council of Norway, 26.5.2025

Outline of the talk

- Stage 3 pitch for the HYROPE project: ERC-2023-SYG
- Concept development
 - $_{\odot}$ Picking the team
 - $_{\rm O}$ Topics and concept
 - $_{\odot}$ Writing phase
- Interview Preparation
- Some advice/lessons learned

Funded by the European Union

European Research Council Established by the European Commission

Grant no. 101119058

The HYROPE project

Stage 3 interview pitch to the ERC in Brussels 14.09.2023

HYROPE proposal Hydrogen under pressure

A new gas turbine concept for large-scale, zero carbon power generation

Motivation:

- Decarbonise our energy system as quickly as possible
- Provide safe and reliable power-on-demand

Why renewable fuels?

• Chemical storage of renewable fuels crucial for dispatchable power on demand

Why combustion of hydrogen and ammonia?

- No CO₂ emissions, renewable fuels
- High power density, reliability and costs

Why gas turbines?

- Fuel and load flexibility
- Balance renewable energy sources
- Ensure power-on-demand
- Need to go big

Single cycle: 538 MW Combined cycle: 760 MW

Ansaldo GT36

2 Gas turbines = power output of a nuclear reactor

Challenge tackled by HYROPE:

How can we transition gas turbines <u>from fossil fuels</u> <u>to hydrogen-based</u> fuels <u>in a short time</u>?

Hydrogen fuels are radically different at high pressure

What is the problem?

- H₂ and NH₃: radically different combustion physics than fossil fuels
- H₂-air flames burn **much faster**
- They are severely wrinkled by thermo-diffusive instabilities
- Impacts flame stability, flashback and emissions

Movies courtesy of H. Pitsch:

J. Beeckmann, et al, PROCI, 36(1), 1531–1538, 2017.

Main scientific challenges

Main scientific challenges:

Hydrogen (H₂)

- Extremely reactive
- High molecular diffusivity, thermodiffusive instabilities
- \rightarrow highest burning rate, strong *unexplained pressure dependence*

Ammonia (NH₃)

- Poor reactivity and fuel-bound N₂
- → prone to NOx and N₂O emissions, unexplained pressure dependence

Knowledge gaps

- Understanding of **coupling** between reaction rate, diffusion, and turbulence
- No models to predict the complex coupling

Unravelling the combustion physics of hydrogen and ammonia

Main ideas

HYROPE

- Unravel effect of pressure on H₂ and NH₃ flames
- 2. Adopt a staged combustion paradigm to take **advantage of two combustion modes**

Why staged combustion?

- Control high reactivity of H₂ and low reactivity of NH₃
- Ensure ultra-low NO emissions

What we will do

Why we need to work together as a team now

Why is ERC Synergy essential?

 Complex task beyond the scope of any single PI - cannot be done unless we work together

Why us?

- Unique combination of facilities and infrastructure for high pressure
- Maintain European scientific leadership
- Track record of working together

How will we work as a team?

- Integrated research tasks (methods, rigs)
- Full team workshops (~2 per year)
- Researcher mobility
- Close coordination

7

HYROPE: A transformational and novel combustion science project

Taken 50+ years of empirically led research to understand combustion physics of fossil fuels

 \rightarrow BUT we need to get to zero carbon within ~10 years!

What is new and transformational?

- A science driven approach for staged combustion
- Combustion physics of H₂ and NH₃ at high pressure
- Landmark experimental database, new models

Funded by the European Union

European Research Council Established by the European Commission

Grant no. 101119058

Concept and development

- Picking the team
- Topic and concept
- Proposal writing/development

Picking the team

Timeline: July 2023 – deadline for November

I wanted to work with my international collaborators - many of whom had ERC grants so top international track records!

It's all about the idea and the science – I knew our area could get funded

Met with potential PIs at a conference and had meetings/lunches to discuss (I had several possible configurations in mind)

Decided the general topics and themes at the conference

We were worried about being engineers... not many SYG grants for engineers

Topics and concept

- I was thinking about topics for a couple of years
- We had been working on H2 combustion before the H2 "boom" so had a track record
- In real applications, combustion happens at high pressures everything gets more efficient - but we knew H2 behaves totally differently to hydrocarbons, so there were massive knowledge gaps
- We chose difficult problems we would normally try to avoid due to cost and difficulty – followed the scientific need
- We used a model problem to highlight all the knowledge gaps and connect the different skills/teams needed to solve them

Proposal writing

- Weekly meetings with the PIs and their key researchers (sometimes meetings were structured, sometimes just a brainstorm)
- One main author to make the proposal coherent (don't just cut and paste)

 I assigned written tasks which I integrated into a document and we
 revised
- Started in B1 first We felt the challenge was to get to stage 2 were confident we could convince experts but worried about the lack of "sexiness" of our topic to a general panel.
- In B1 we worked to balance high level concepts with detailed science
- Make bold but believable statements... pointing out why the knowledge gaps you want to fill have been difficult etc.

Funded by the European Union

European Research Council Established by the European Commission

Grant no. 101119058

Interview preparation

- Panel presentation development
- Rehearsal

Interview preparation

Presentation

- Follow the instructions!
- Spoke with other SYG winners main advice was that the panel would unlikely have specialists (true!).
- Interview was foremost about how "the synergy of the team"
- Balance presentation between scientific need, what we would do and why our team could do it
- Met in person for a full week to work on the presentation who would present what parts, generate a list of questions, and who would answer them

<u>Rehearsal</u>

• We had many mock interviews: groups of international colleagues, ERC contact points in Switzerland, France/CNRS, NTNU - we rehearsed a lot.

Random lessons learned/suggestions

- Self-check
 - Is your track record and idea truly fundamental and excellent? Can you benchmark it against international research? Have you sufficient proposal writing experience/success?
- Spend time on graphics to break up the text of the proposal

 $_{\odot}\,$ it takes a long time if you do them yourself

- It has to be a team effort it helps if you have already established collaborations
- Again, it's all about <u>the idea</u> and <u>the people</u>
- If you get to stage 3 prepare as much as you can meet in person for a good period of time.

• Sitting together in a room for 3-4 days is essential (not the same as meeting online)

Questions?